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Abstract 

 

This paper discusses the potential of Multivariate Curve Resolution (MCR) models to 

extract physiological dynamics behaviors from Dynamic Contrast Enhanced Magnetic 

Resonance (DCE-MR) Imaging prostate perfusion studies for cancer diagnosis. A 

relationship with biomarkers (“hidden” parameters for assessing the possible existence 

of a tumor) from pharmacokinetic models is also studied. 
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1. INTRODUCTION 

 

Angiogenesis and neovascularization are biological processes associated to tissues with 

increases oxygen and nutrients demands. These processes seldom occur in healthy 

subjects but they are strongly present in pathological conditions such as tumors. The 

increase in blood perfusion due to the formation of new and tortuous vessels can be 

studied with dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging [1]. In 

these studies, an exogenous contrast media is administered intravenously and diffuses 

from the capillary network into the extravascular extracellular space, establishing a 

dynamic relationship between image signal intensity changes and the amount of contrast 

media that passes and diffuses into a certain tissue. The capability to analyze tumor 

angiogenesis in a quantitative and reproducible way from DCE-MR images has 

important applications to depict and gradate tumors, and also to evaluate the therapeutic 

response early after treatment onset [2-3].  

To obtain quantitative measurements it is necessary to characterize the intensity vs. time 

curves associated to each pixel of the image. Out of the different approaches proposed 

to achieve this evaluation, mathematical pharmacokinetic models have become the most 

popular in recent years due to their ability to provide physiologically meaningful 

parameters [4].  
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One of the critical steps in pharmacokinetic modeling is the selection of an appropriate 

arterial input function (AIF) obtained from the tumor-feeding artery [5-8]. This function 

is a time-varying curve with a specific dynamics pattern, comprising a baseline, an 

abrupt positive peak and a fast decay or washout (Figure 1a). The determination of this 

curve is often based on the visual inspection of a volume of images and the manual 

selection of the region of interest (ROI) including the artery. This approach introduces a 

user-dependent bias into the analysis, penalizing the reproducibility of the results.  

One characteristic of these models is the lack of a priori knowledge about the tissue 

vascular environment, which leads to a series of assumptions that condition the use of 

different pharmacokinetic modeling approaches [9]. Accordingly, and depending on the 

tissue dynamics patterns (Figure 1), the pharmacokinetic model may provide biased 

measurements which may not properly reflect the true physiology of the tissue [10]. 

Therefore, having a priori knowledge about the tissue dynamics may help to interpret 

the information provided by the pharmacokinetic parameters. 

 

[INSERT FIG. 1 ABOUT HERE] 

 

This variability affecting the calculations and interpretation of the results provided by 

these parametric models has limited their applicability and widespread use in clinical 

practice, as it is difficult to obtain a validation and standardization of the parameters that 

ensure reproducibility among different studies. 

One possible way to look for these dynamic behaviors is by applying multivariate 

statistical projection models to the DCE-MR imaging data. In image analysis, this 

application is known as Multivariate Image Analysis (MIA) [11-12], usually based on 

Principal Component Analysis (PCA) [13]. Its application to oncology [14] allows 



Original Research Article 

4 

extracting the sources of variation from a relevant number of time-sequenced images 

from different individuals, providing new statistical models that help explaining the 

perfusion differences between healthy and cancer affected tissues. MIA has also been 

applied with segmentation and classification purposes by Gurjal et al. [15], as well as 

for segregating between healthy and diseased livers [16]; showing the potentials of the 

technique. 

By using MIA, the multivariate model might even better describe the dynamics than the 

mathematical imposed model, better pointing out to the pixels of interest for improving 

the model. This would may be at least partially due to the fact that “the wealth of 

physiological and pharmacokinetic assumptions likely oversimplifies an exceptionally 

complex system [14]”, varying from patient to patient. Thus, this procedure comes out 

as a proper way to deal with this natural variation and seek for the best candidate pixels 

for the estimation of the AIF, thus reducing the uncertainty in the estimation of the 

pharmacokinetic parameters [17-18]. 

The drawback of the application of PCA in DCE-MR image analysis is that the 

estimated dynamics patterns are orthogonal by design. Since real dynamics do not need 

to be orthogonal this is an important limitation of this approach. There exist other 

chemometric models, such as the Multivariate Curve Resolution (MCR) models [19-20] 

which do not impose these restrictions. Applications of MCR models on biomedical 

images can be found in [21], where the score images obtained from these models as well 

as from PCA scores from near-IR FT-Raman images are used for segmentation 

purposes on rabbit kidney calculi. 

The aim of this paper is to evaluate the applicability of MCR to DCE-MR imaging of 

prostate and to compare the extracted dynamic components with the quantitative 

parameters (i.e. biomarkers) estimated from the generalized pharmacokinetic model. 
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In Section 2, the materials and methods used are presented. Section 3 shows the 

extracted dynamics for one case and compares the results from the MCR-based 

proposed methodology to those obtained from the pharmacokinetic models. Finally, 

conclusions are outlined in Section 4. 

 

2. MATERIALS AND METHODS 

 

2.1 Image acquisition  

 

Ten patients with surgery proven prostate carcinoma were studied with a specific high 

temporal resolution DCE-MR sequence (3 Tesla magnet, 3D spoiled gradient echo 

sequence, repetition time 3 ms, echo time 1.7 ms, flip angle 40º, 3 seconds per image, 

total acquisition time 5’30’’, 47 non-equally spaced temporal samples, image size 

192x192, voxel size 1x1x4 mm, 12 slices covering the whole prostate, contrast agent 

Gd-DOTA 0.2 ml/kg injected at 4 ml/s with 40 ml of saline flush at the same rate). The 

output of this sequence was a series of 564 images (12 slices x 47 time steps) showing 

the pelvis area perfusion dynamics after the contrast media administration. All images 

were anonymized and transferred to a dedicated workstation for post-processing.  

 

 

2.2 Pharmacokinetic model 
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Pharmacokinetic modeling of DCE-MR images is based on the application of a 

mathematical analysis to tissue enhancement curves, often on a pixel-by-pixel basis. 

Here, each individual pixel enhancement curve is fit to the following equation: 

)()(),,( tRtCtyxC AIF          (1) 

where C(x,y,t) is the tissue enhancement curve at pixel with coordinates (x,y), CAIF(t) is 

the enhancement curve of the arterial input function (the artery that supplies most blood 

to the tissue of interest), R(t) is the tissue response function and  is the convolution 

operator. 

It is usually assumed that: 

tktrans epeKtR


)(       (2) 

where kep is the washout constant, and K
trans

 is the transfer constant. 

The generalized kinetic model can be expressed as [4]: 





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k

AIF

trans deCKtyxC ep

0

)(),,( 


 (3)

 

The model needs as input the reference arterial input function (CAIF) and the tissue 

enhancement curves C(x,y,t). These curves are usually extracted by manually placing 

ROIs in the artery (i.e. one of the iliac arteries for the prostate) and the tissue of interest 

(i.e. the prostate in this study). Then the pharmacokinetic parameters kep and K
trans

 can 

be obtained by curve fitting algorithms for each pixel in the image area under study. 

This model was applied to the time-sequenced images obtained for each of the 10 

patients analyzed. 

 

2.3 Multivariate Curve Resolution models 
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For each slice of the studied tissue, DCE-MR images can be interpreted as a 3D data 

volume formed by a 2D image obtained at each time point t. This 2D matrix is built by 

the n1×n2 pixels that form a gray level image for each channel in the time dimension. 

For simplicity, in this study only one central slice including the prostate is analyzed for 

each patient. 

Once the 3D X (n1×n2×T) image is defined, the following step is to take each of the T 

channels (i.e. time points) and unfold the n1×n2 pixels into a column, thus forming a 2D 

X ((n1×n2)×T) matrix that can be analyzed by MCR. 

 

In this paper, a Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

[19-20, 22-23] model has been used because of its ability to provide physically more 

interpretable results by imposing some a priori knowledge on the model and the lack of 

orthogonality restriction on the internal relationships between variables (extracted 

dynamics). The idea behind MCR, traditionally applied in analytical chemistry, can be 

easily expanded to the concept of dynamic perfusion phenomena, stating that the pixel 

enhancement curve C(x,y,t) is a linear combination of the different “pure” dynamic 

behaviors existing in it. The lack of orthogonality restriction in the pure dynamic 

behaviors improves the model in terms of physiological interpretability.  

MCR-ALS is an iterative method that performs a bilinear decomposition of matrix X by 

means of an alternating least squares optimization: 

X = CS
T
+E          (4) 

In this particular application, S
T
 is a matrix containing in its rows each one of the 

dynamic behaviors modeled, C gathers the relative importance of each modeled 

dynamic behavior for each pixel of the image, and E is a residual matrix. 
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MCR relies in the correct determination of the number of “real” dynamic behaviors in a 

data set (the image in this case). When some a priori information is available, it can be 

used as an initial estimation. In this case, when a tumor is evolving in the prostate, three 

different dynamic behaviors can be expected: 

1. Type A: drastic enhancement and fast washout (AIF) (blood flowing within the 

arteries), corresponding to the dynamics pattern in the artery (Fig. 1a). 

2. Type NT: low progressive enhancement without washout, corresponding to a 

non-tumoral tissue (Fig. 1b). 

3. Type VT: delayed drastic enhancement and widened washout in comparison to 

the perfusion in the arteries, corresponding to a highly vascular tissue, such as a 

tumor (Fig. 1c), 

This a priori knowledge can be checked by using some tool able to show up the 

relevant sources of information in the time-sequenced images. One possible way to do 

this is by applying PCA on the data set, and taking a look at the number of latent 

variables (principal components, PC’s) with the highest variance. Once the number of 

likely dynamic behaviors present in the image is determined, the purest dynamics in the 

raw data can be sought using e.g. SIMPLISMA [24, 25] or more recent approaches 

proposed by Windig [26], ROI’s of loadings extracted from PCA (not the best option in 

this case, because not all the purest dynamic behaviors could be a priori known to be 

located at some pixels, nor negative dynamics behaviors could happen in reality); 

genetic algorithms [27-29]; or OPA [30]. In this work, since we have used the software 

available at the Multivariate Curve Resolution Homepage [31], the SIMPLISMA based 

algorithm implemented in Pure function has been applied. 
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The previous steps only help on the initial estimation of the dynamic behaviors. 

However, these dynamic behaviors do not need to be present in all pixels. In order to 

find out the likely number of dynamic behaviors present in a pixel, the Fixed Size 

Image Window-Evolving Factor Analysis (FSIW-EFA) [32-34] was applied. FSIW-

EFA performs local PCA models in the whole image by moving small windows around 

each individual pixel area. This way, the number of relevant PC’s (significant singular 

values) in these small windows advice for the number of constituents (dynamic 

behaviors) present in that local window. In this work, since it is expected to find three 

different dynamic behaviors at most at each pixel location, a 2×2 pixel window was 

used. One could argue about using a larger window size, because maybe more than four 

events could be happening in it. However, enlarging the window size necessarily means 

to lower the spatial resolution of the method, hence loosing precision about the location 

of the events (dynamic behaviors, then affected tissue), which is critical in these studies. 

From the number of significant singular values in each pixel area, local rank maps [34] 

are derived, which inform about the number of different constituents that form each 

pixel, acting as a constraint map in the MCR model. Depending on the threshold used to 

separate significant from non-significant singular values (i.e. determining the number of 

dynamic behaviors at each pixel location), local rank maps may vary. When trying to 

look for the real dynamics in the image, a good option is to look for pixels with a robust 

rank estimation. In these cases, partial local rank maps can be used. These maps are 

obtained after setting a threshold band for significance of eigenvalues. This way, only 

pixels having a constant rank value between the lowest and the highest limit of the 

threshold band (i.e. with a more robust rank estimation) appear in this map; leaving the 

rest unconstrained. Nevertheless, for identification purposes, the local rank information 

should be combined with reference spectral (dynamic) information, which can be 



Original Research Article 

10 

approximately obtained by pure variable selection methods, as in this work, or by a 

previous MCR-ALS analysis with only non-negativity constraints. For further reading, a 

completely devoted paper to this issue is [35]. Once the number of constituents per pixel 

has been assessed, it can be imposed as a constraint on the MCR model. Also, two 

additional constraints were imposed: 

1. Non-negativity on the pixel intensity values, because the intensity in a pixel has 

to be non-negative. 

2. Non-negativity on the dynamics profiles. 

Regarding the use of additional constraints, as in this case that related to the form of the 

AIF and its parameterization, since different types of equations might be used [36, 37], 

we decided not to impose any a priori form that might bias the results, and leave the 

model free to fit the best AIF in each case. The MCR model built this way provides the 

matrices S
T
 and C previously commented, gathering the dynamic behaviors found, as 

well as the corresponding relative importance of each dynamic behavior at each pixel 

location, respectively. By refolding the C matrix into the original n1×n2 spatial 

dimension, new images (known as distribution maps) are obtained, which permit to 

locate those pixels more related to each of the corresponding dynamic behaviors 

provided by the model. 

The whole sequential procedure is summarized in the following steps: 

1. Determination of the approximate number of dynamic behaviors by PCA, 

according to the number of relevant singular values. If a priori knowledge is 

available, it should be used. 

2. Determination of the pixels with purest dynamics behaviors. 

3. Determination of the number of dynamics behaviors present at each pixel 

location by FSIW-EFA. 
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4. Application of the MCR-ALS with the additional constraints of non-negativity 

both on the pixel intensities and the dynamic behaviors. 

Applying these first four steps on the whole pelvic area is necessary in order to obtain 

an accurate AIF. 

5. In order to improve the precision in the prostate area, local MCR models were 

built for each of the ten prostates analyzed. The same ROIs defined at the 

pharmacokinetic modeling step were used here for segmentation purposes. The 

dynamic behaviors obtained in the previous MCR model, with the exception of 

the AIF (which is present in the arteries, but not in the prostate) can be 

implemented as initial guess. The same constraints should be imposed. 

 

All calculations for pharmacokinetic modeling and MCR were done using Matlab (The 

Mathworks Inc., Natick, MA, USA). Multivariate Statistical analyses were performed 

using SIMCA (MKS Umetrics AB, Umea, Sweden). MCR-ALS algorithms were 

downloaded from the Multivariate Curve Resolution Homepage [31]  

 

3. RESULTS 

In order to illustrate the application of the MCR-based methodology on the DCE-MR 

images one case is discussed in detail. Afterwards, the dynamics obtained from the 

MCR method on the ten cases studied are compared to the corresponding biomarkers 

K
trans

 and kep estimated from the pharmacokinetic models. 

 

3.1 MCR analysis 
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First step in any MCR analysis on DCE-MR images deals with assessing for the number 

of significant dynamic behaviors in the image. Figure 2 presents the variances of the 

first 10 PC’s from the fitted PCA model. It can be seen that from PC 5 in advance, all 

the PC’s have similar amount of explained variance, so four significant behaviors can 

be assumed to be present in the image. 

 

[INSERT FIG. 2 ABOUT HERE] 

 

Afterwards, the four purest dynamic behaviors to be introduced in the model are found. 

Figure 3 shows the results corresponding to the case under study for the four dynamic 

behaviors indicated by PCA. 

 

[INSERT FIG. 3 ABOUT HERE] 

 

The next step consists on applying FSIW-EFA. The results provided about the presence 

of a different number of dynamic behaviors at each pixel location are presented in 

Figure 4, related to the abdominal slice containing the prostate analyzed. As can be 

observed, there are some internal parts of the abdominal slice that have zero value, 

which actually means that the model is free for providing the number of dynamics 

behaviors at those pixel locations. In fact, the external parts surrounding the abdomen, 

which are just background, were extracted from the model for computational and noise 

removal purposes. 

 

[INSERT FIG. 4 ABOUT HERE] 
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Using this partial local rank map as one constraint, as well as the non-negativity on the 

pixels’ intensities and on the dynamic behaviors in the MCR model, matrices C and S, 

gathering the relative importance of each dynamic behavior at each pixel location and 

the dynamic behaviors, respectively, are provided. Figure 5 shows the obtained dynamic 

behaviors.  

 

[INSERT FIG. 5 ABOUT HERE] 

 

In order to visualize where these dynamic behaviors are more predominant, it is 

necessary to refold each of the columns of the C matrix into their original spatial 

dimension, n1×n2, obtaining the dynamic behaviors distribution maps (Figure 6). By 

inspecting both figures, we can appreciate that VT behavior (Figs. 5 and 6, bottom left) 

seems to reproduce the perfusion in the arteries (type A) (Figs. 5 and 6, top left), but 

delayed around 2 time steps, and with a bit more of amplitude. This behavior is 

happening in some internal area of the prostate, and it is an indicator of a highly 

vascularized region. In addition, Fig. 6, top left, provides the pixels that show the 

arterial perfusion process sought, shown in Fig. 5 top left, corresponding to the iliac 

arteries. Furthermore, there is a progressive enhancement in the rest of the prostate, 

which is in accordance to the healthy-like contrast uptake process (Figs. 5 and 6, top 

right). Finally, there is an additional non-physiological contrast media arrival (type 

CMA) effect (Figs. 5 and 6, bottom right) of no physiological interest, but also captured 

by the model. This non-desired effect is probably inherent to MR studies, which use an 

exogenous contrast media. The arrival of the contrast media in the tissue of interest 

changes its magnetic properties and the signal intensity, so that the images are slightly 

affected too, though the MR equipment usually auto-scales them to minimize the 

effects. Also, this fourth dynamic is predominant at certain low vascular peripheral 
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regions (see Fig. 6 bottom right), which correspond to some specific elements of the 

MR receiving coil. 

 

[INSERT FIG. 6 ABOUT HERE] 

 

Up to this step, PCA was also tested in the 10 cases under study (results not shown). It 

was also able to extract out the AIF function, but not the segregation between the 

behaviors in the prostate, nor the existence of the type CMA behavior. Furthermore, the 

fact of imposing orthogonality often forced parts of the AIF to disaggregate on more 

than one PC.  

 

3.2 Local MCR prostate modeling 

 

The dynamic behaviors previously detected may still be estimated more precisely when 

focusing into the prostate area. In order to deal with this issue, MCR local models for 

the prostate area were fitted. This approach dismissed the AIF pure arterial behavior, 

since it is not present in the prostate region of interest. Figures 7a) shows the final 

optimized dynamic behaviors and distribution maps for the prostate area MCR local 

model. Furthermore, MCR bands [38] were also applied in order to check for possible 

ambiguities (Fig 7b), and study the feasibility of the final dynamic behaviors obtained. 

In all 10 cases, the bands were very close to the proposed solution. Only in one case the 

CMA dynamic behavior presented one bound different and separated from the proposed 

one. Nevertheless, the CMA proposed dynamic behavior and its upper bound were 

validated by the doctors as the realistic ones, as they were similar to the rest of cases.  

 

[INSERT FIG. 7 ABOUT HERE] 
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[INSERT FIG. 8 ABOUT HERE] 

 

As can be seen from comparison with Fig. 5 (bottom left), the highly vascular tissue 

dynamic behavior (blue in Fig. 7a), bottom-left in Fig. 5) has changed significantly, 

although in a way that keeps the same delay (the peak is also located at the 15th time 

step) and larger amplitude. The healthy-like enhancing tissue (red in Fig 7a), top-right 

in Fig. 5) and the contrast media arrival effect (green in Fig 7a), bottom right in Fig. 5) 

remain essentially the same. From Fig. 8, it can be observed how, even still present, the 

non-physiological contrast media arrival effect has almost disappeared, and only the 

healthy-like tissue keeps similar intensity values to the highly vascular tissue dynamic.  

 

3.3 Dynamics from MCR versus pharmacokinetic biomarkers 

 

The MCR analysis was performed for all the 10 cases under study, obtaining the relative 

importance of each of the three dynamic behaviors found for the MCR local models, 

once the AIF was extracted from the global models. In addition, the pharmacokinetic 

model (Eq. 3, Section 2.2) was applied to each of the 10 patients analyzed, obtaining the 

estimated biomarkers K
trans

 and kep for each one of the pixels of the patient prostate 

images under study.  

 

Pharmacokinetic modeling is a highly time consuming task requiring expert knowledge. 

On the other hand, MCR analysis is rather fast and easy to apply. Therefore, it is worth 

to study the relationship between the dynamic behaviors (type VT, NT and CMA) 

obtained by MCR-ALS and the estimated pharmacokinetic biomarkers (K
trans

 and kep). 

Two PLS-1 models, one with K
trans

 and the other with kep as y response variable, were 



Original Research Article 

16 

fitted. The X matrix was built with the prostate area pixels from the ten cases analyzed; 

stacking each patient one below the other (i.e. pixels from patient 1, then pixels from 

patient 2, etc.). For each pixel, distribution maps values for types VT, NT and CMA 

dynamics were registered as X variables. Moreover, in order to estimate not only overall 

but also patient specific relationships, cross-products effects (i.e. interaction terms) 

between dynamic behaviors and cases (i.e. patients) were modeled. In both PLS-1 

models interactions between types NT and CMA with the cases did not provide 

statistically significant coefficients in general (p-values > 0.05), so they are not included 

in the final PLS models, for simplicity considerations.  

 

Figure 9 shows the coefficients plot with 95% jackknife confidence intervals from the 

K
trans

 PLS-1 model built, (goodness of prediction Q
2
=0.83). The first three coefficients 

(VT, NT and CMA) show the overall linear relationship (average for all the patients 

studied) of the three dynamic behaviors with K
trans

. The following ten coefficients (Case 

(1), Case (10)…Case (9)) model K
trans

 average differences between the ten patients 

studied. The last ten coefficients (VT*Case (1), VT*Case (10)…VT*Case (9)) estimate 

the slope difference of the relationship for each particular patient with respect to the 

overall linear relationship modeled by VT coefficient. 

 

[INSERT FIG. 9 ABOUT HERE] 

 

From Figure 9, there is a statistically significant high overall positive linear relationship 

of type VT dynamics with K
trans

, which is not statistically related to type NT in general, 

and has a small negative relationship with type CMA dynamics. There are also 

statistically significant patient specific effects not only in terms of average K
trans

 values ( 
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see case(#) coefficients) but also on different slopes in the relationship of K
trans

 with 

type VT dynamics for each patient (see VT*case(#) coefficients). Given the fact that the 

interaction coefficients are smaller than the overall linear effect (VT coefficient), the 

relationship between K
trans

 with type VT dynamics is positive for all the patients, 

although with a different value. This means that, although with a different intensity 

depending on each patient, the highly vascular tissue dynamic behavior, characteristic 

of some tumors, is positive related with the transfer constant, K
trans

, biomarker. Figure 

10 shows the predicted vs observed values for K
trans

 for the 10 cases analyzed. 

 

[INSERT FIG. 10 ABOUT HERE] 

 

Regarding washout constant, kep, biomarker, similar results have been obtained for the 

PLS-1 model built, with a goodness of prediction Q
2
=0.75 (see Figures 11 and 12). 

From Fig. 11, which presents the coefficients plot with 95% confidence intervals, again 

it is possible to see the main statistically significant overall positive relationship of type 

VT, with a small overall negative effect of type NT is this case, as well as for type 

CMA. Also again, depending on the case studied, different average values and positive 

slopes of kep vs type VT are expected.  

 

[INSERT FIG. 11 ABOUT HERE] 

 

[INSERT FIG. 12 ABOUT HERE] 
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These results reflect the heterogeneous dynamic behaviors associated to tumors, where 

several enhancement patterns may coexist and interact at each pixel and with 

particularities for each patient. 

 

4. CONCLUSIONS  

 

In this work, MCR was used instead of PCA in MIA to extract physiological dynamic 

behaviors in the prostate from DCE-MR images, as real dynamics do not need to be 

orthogonal and probably they are not. Also, MCR allows introducing constraints about 

non-negativity, which is not possible when using PCA, because of the orthogonality 

restrictions; as well as about the number of dynamic behaviors (components) present in 

a pixel.  

 

The obtained results provide optimized dynamics related to different enhancement 

patterns, such as the AIF (type A dynamics), healthy-like tissues (type NT dynamics) 

and highly vascularized tissues (type VT dynamics). Apart from the expected dynamics, 

a fourth dynamic behavior was obtained corresponding to the contrast media arrival 

(type CMA dynamics). Further studies using different MR acquisition sequences and 

equipment are necessary to assess the influence of this effect. In fact, the MCR 

workflow presented in this study could be used to subtract the influence of non-

physiological dynamic effects, should they be biasing the calculation of the 

pharmacokinetic parameters.  
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The successful extraction of the AIF can be potentially used to set an automatic 

procedure that locates the nearest AIF to the tissue of interest, as is the prostate in this 

case. Therefore, the bias associated to the manual selection of the AIF (needed in 

pharmacokinetic modeling) would be eliminated and a more reproducible 

pharmacokinetic analysis would be achieved [5,17].  

 

Furthermore, by using final local (prostate) MCR models, in all cases it has been 

possible to segregate the highly vascular (VT) and normal-enhancing (NT) dynamics in 

the prostate, establishing their relationship with both K
trans

 and kep constants through 

PLS models, which indicate a clear positive linear relationship with type VT and a 

dependence on the patient.  

 

This relationship has a potential interest to disaggregate pixel-by-pixel the transfer 

constant K
trans

 into perfusion (highly-vascular dynamics) and permeability (normal 

enhancement pattern) components [10], which is a current issue in pharmacokinetic 

modeling of DCE-MRI studies, especially in the analysis of tumors where areas with 

very different vascular behaviors coexist. 

 

Therefore, these PLS models can finally be used on a patient basis as a fast method to 

characterize the highly vascular and normal dynamics contributions to the 

pharmacokinetic model biomarkers. Further studies using these dynamic behaviors are 

required to assess for the precision and benefits of the proposed methodology.  
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